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This paper deals with a general deterministic particle method for the approximation of 
transport-diffusion equations. The method is applied to a Fokker-Planck equation which 
models fast ion transport. 6 1989 Academic Press, Inc. 

1. INTR~OUCTI~N 

It is well known that particle methods are a powerful tool for the simulation of 
numerous phenomena involved in such diversified areas as astrophysics, plasma 
physics, semi-conductor physics, and hydrodynamics (for example, see [l-3]). 

From a mathematical point of view these methods can be interpreted as numeri- 
cal approximation methods for transport equations. 

This paper is not intended to explain in detail the principles of these methods. 
For more details on this, we refer to published works [14], which also give 
convergence analysis. Particle methods are particularly suitable for the treatment of 
transport terms; this is not the case for diffusion terms. Several authors propose to 
treat these terms by Monte Carlo methods [S, 61. Another possibility is to assign 
a time-varying “weight” to each particle to simulate the diffusion term effect [7]. 
A third possibility, which is dealt with in this paper, is to consider diffusion terms 
as nonlinear transport terms, thus following an idea developed in [S-lo]. The 
problem is then reduced to a transport equation which can be resolved by general 
techniques of particle approximations. 

First we study the following diffusion equation: 

af -- cra2f=0 
at a2 
f(h 0) =f&) 
(x, t)E R x [0, T]. 
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We supply a stability criterion and compare the exact solution with the 
approximated one. We then study the equation: 

We explain how the approximation of this equation by a particle method extends 
f by symmetry conditions in the neighbourhood of 1 and - 1. This procedure, 
which is specific to particle approximation, is not related to the usual boundary 
condition problem. 

Naturally, this particle method was not developed to compete with finite 
difference or finite element methods which remain, at present, most suitable to solve 
diffusion equations. As a matter of fact, the treatment of boundary conditions with 
particle methods is not yet fully clarified. 

However, we can generalize the use of particle methods to the case of transport- 
diffusion equations for which the diffusion term is not dominant. We are especially 
concerned with the transport of fast ions. This phenomenon is modelled with a 
Fokker-Planck equation of the type 

a(v) and c(v) being given functions. 
We see that if the diffusion term 

is taken into account, it appears as a correction to the fast ion equations of motion 
considered in phase space: 

i=pv 

ti = u(v) 

fi = 0. 

In other words, we can say that the diffusion term acts as a self-consistent force 
field. We deal with the example of protons and alpha particles slowing down in 
boron-deuterium-tritium and deuterium-tritium plasmas [ 111. 
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2. TREATMENT OF DIFFUSION EQUATION 

2.1. Formulation 

The l-dimensional diffusion equation can be written 

af ad2f=0 at- ax* ’ 

f(x, 0) = h(X)? 
(x, t) E R x (IO, Tl, 

(T being a given constant. 
We can further assume: f > 0, in which case this diffusion equation can be 

written in the form of a nonlinear transport equation: 

a- a z + z (F(f) f) = 0, 
(1) 

f(x* 0) = h(x), 
(x, t) E R x CO, Tl, 

with 

F(f)= -o-:f=#(Log(+)). 

Let F,(r) = x(<, t) be the transformation that associates to each 5 the unique 
solution of the characteristic differential equation associated with (1 ), 

i(t) = F(f(x(t), t)), 

40) = 5, 
and let 

ax 
J(cl, t) = -g (5, t) 

be the Jacobian of this transformation. 
Equation (1) can then be written, in a Lagrangian point of view, 

$) -$ (45, t) f(x(5, t), t)) = 0, 3 
f(x(L Oh 0) =&L.?(r)> 

from which we deduce 

453 t) f(x, t) =fo(O 

(2) 

(3) 
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A “weak” formulation equivalent to this relation consists in finding a function 
f =f(x) such as to yield, for any function sufficiently regular and with compact 
support, 

pcx, t) cp(x) dx = [Rfu(t) (P(x(5, t)) dx (4) 

2.2. Particle Approximation 

The basic principle of particle methods is to approximate the function fO by a 
linear combination of Dirac functions [4, 121. By means of a numerical integration 
formula, we can assign for any function $ which is sufticiently regular and with 
compact support, 

(5) 

from which we deduce a “weak” approximation of fO, 

30(t)= ; ojfO(5j)s(t-5j)~ 
j= 1 

Replacing fO by &, in Eq. (4) we obtain 

s RftXY ‘1 cPtx) dx= f ojfO(&) cPCx(tj, !))9 
j=l 

which yields a “weak” approximation f off, 

Ax7 ‘)= f, ojff(tj) 6(X-X,(t)), 
j=l 

where x,(t) = x(t,, t) is the solution of the differential equation 

(l<j<N) 

I 

iji;l(t)=F(f(x,(t)9 t))="t(Log(f(xj:r), t,)) (6) 

x,(O) = lj. 

We obtain an approximation in the usual sense of f by replacing 7 by its 
convolution product f=f * i, with a “shape” function [,, i.e., an even function 
with a support [ -6, E] and such that 1 i,(x) dx = 1. Then we have 
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Examples of “shape” functions are given in [ 1, 41. We mainly use the “gate” 
function, 

i,,I(x)=o, otherwise, 

and the “hat” function, 

L,*(x) = y, 1x1 < 6 

L.*(x) = 05 otherwise. 

(7) 

Let us assume i, is differentiable; if we substitute f for f in the expression of the 
nonlinear term F(f) = a(8/8x)(Log( l/f)) we obtain a “natural” evaluation of F(f) 
which is: 

F(f(x,(t), 2) = -0 
c,"= I wcf0(5k) m,(t) -x,(t)) 

Cf= I akh(5k) le(xj(r)-Xk(r))' 

Equations (6) then appear as a coupled differential system, for 1 <j< N, 

a,(t) = -~ C,"=l W/rfO(tk) iL(xj(r)-Xk(r)) 
J 

Cf= I mkf0(5k) i.sCxjtr) - Xk(r)) 
(9) 

xj(o) = 5.j. 

We observe that this type of approximation preserves the integral of f 
throughout time: 

J” 
R 

Ptx, f, dx=JRfO(r) dt=C”jfO(5j)* 

i 

Regarding the convergence properties of this type of approximation the reader is 
referred to [4]. 
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2.3. Discretization in Time and Stability 

The differential equation system (9) is approximated by an explicit Euler scheme: 

xn+l -X” , = -~ CL 1 ~kfO(Sk) ux; - 4 
At c,“= 1 %fdL) Lxx; -x:) 

Let us suppose that Eq. (1) is discretized by a finite difference scheme with steps 
of Ax, At for (x, t) E C-L, L] x [0, T] (2L = N Ax and T= MAT). The Courant- 
Friedrichs-Levy (CFL) stability condition would then be written 

By analogy with this criterion, it seems suitable to assume 

In practice this criterion means that a particle may not cover a length greater than 
E during one time step. We then obtain 

For the sake of simplicity, let us assume that (see definitions (7) and (8)): 

i, = L, 1 and i: = iL.2. 

This leads to 

f 

- 5, (xl = $,J(X) 
----- 

I---- 

q (xl = Q(x) 

L 

581:82.1-Y 
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Let JVJ’ = { xz, x,” - E <x; < xi” + E} and NT = card(N,“). We have 

and 

Hence, 

CT Max 
l<j<N 

ckN= 1 WkfCI(tk) i:(x; -xi) 

cr=, @kfO(&) &; -x;) I) 

2 
<--CT Max 

Max,..,; (wkfO(tk)) 

A suffkient condition for the stability criterion (10) to be confirmed is then 

(11) 

We observe that this criterion is the less restrictive as e.~~f~(<~) is a constant for 
any k. Multiplying f by a constant if necessary, we can assume that 

Changing the variable, 

in expression (5) yields 

Thus, using a numerical equiweighted integration formula on [0, 11, provides 

Assume we solve the N equations: 
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we then obtain 

In this case we have, for any k, w&((~) = l/N and criterion (11) becomes 

At 1 
CT-<-. 

E2 2 (12) 

If we suppose that E plays the same part as Ax we find the same stability criterion 
as for the classical time-explicit finite difference scheme (see [ 131): 

At 1 
o-<-. 

Ax2 2 

Consider the example, 

af a2fzo --- 9 at ax2 

.f(O)=fo, 
(x, t)E [ - 10, lo] x [O, 0.51, 

(13) 

with 

f&)= 1, I4 <A 

"f&)=0, otherwise. 

Numerical experimentation with this example confirms the part played by 
parameters E and At, as provided for by criterion (12). On the other hand, we 
observe that parameter N does not affect the stability of the method. 

We can refer to Figs. 1 and 2 on which the exact solution, 

f(x, t)=~~~E~‘(~-~)‘4~‘zfb(U)dU, 
J- 

and the approximated solution of Eq. (13) are being compared. The influence of the 
shape function [, and its derivative is discussed in [lo, 141. 

2.4. Symmetrization 

We have been working so far on the entire space, or at least on an interval 
C-L, L] such that f is zero or negligible between -L and L. Let us consider a 
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E = 0.1, AT - 0.00 e = 0.1 , AT = 0.1 

1.88 - 

0.80 - 

8.60 - 

8.18 - 

8.20 - 

8. L 

-1.80 -8.58 B. 0.50 1.00 -1.00 -0.50 0. 0.58 1.00 
X18 

I 
n lB 

1 

E - 0.2 , AT = O.Ol E - 0.2 , AT = 0.1 

1.00 

0.88 - - 0.60 

8.68 - - 0.60 

8.48 - - 0.40 

B.ZB - - 0.20 

0. 

-1.80 -8.58 8. 8.50 1.00 -1.00 -0.58 0. 0.50 1.00 
I #I@ I -10 

E - 0.4 AT - - , O.Ol e 0.4, AT = 0.1 

FIG. 1. Heat diffusion equation--effect of Af and E (N= 50 particles per E, T= 0.5). 

diffusion equation on a bounded interval such that f is not zero at the boundaries 
of the interval, for example, 

(14) 
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-1.0E -0.50 0. 0.50 1.00 
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NE100 
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0.20 
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-1.00 -0.50 0. 0.50 1.00 
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1.00 

0.60 

0.40 

0.20 
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-1.00 -0.50 0. 0.50 1.00 

*10 
I 

FIG. 2. Heat diffusion equation-effect of N (E = 0.4, At = 0.01, T= 0.5). 
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with fO = 1 (in which case f = 1). The particle approximation of this equation yields 

Fix, l)" f wjfO(<j)ie(x-xj(t)), 

.j= 1 

where xj(t) is the solution of the differential equation 

ij(‘)=o(l-x:(‘))$ Log 
( 

1 

> f(xj(t)2 f, ’ 

i.e., in an approximated form: 

A sufftcient condition for the stability of the method clearly remains 

At 1 
CT--<-. 

E2 2 

If satisfied, this condition guarantees that for any j, 

x~+‘E[-l-&,l+&]. J 

If x?+‘> 1 (resp. x;+l J 
< - 1) we assign to this particle the new position: 

,y+L,-x; (resp. XT+‘= -2-x;). 

We are then sure that all particles remain within the interval [ - 1, 11. It then 
remains to correctly estimate the values f’(x; + ‘) and f(xT+ ‘) in the neighborhood 
of - 1 and 1. For example, let us consider the neighborhood of 1 and let 

M {X:+1, ?l+1= 1 -&<x;+l< l}. 

If x,“+‘EJY;,+i we define 

f(xJ’l)= i WkfO(~k)~e(X~+l-X~+l)+ c WkfO(Sk) IAx:+ 1 + xi+ 1 - 2), 
k=l ksMn+i 

f’(x;+l)= ; WkfO(Sk)I~(XjR+‘--Xnk+‘)+ 1 

(15) 

f&f&)i;(X;+l +x”,+‘-21, 
k=l ks.wn+I 

In particular, we notice: 

f(l,(n+l)At)=2 c WkfO(tk)~#-X;+‘h 
ke.Y.+, 

j“(1, (n+ l)dt)=O. 
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Similarly let Xn+,= {x2”, -1 <x”,+‘< -1 SE}. If xJ’+‘EMH+, we define 

Okf0(5k)i,(X:+‘+X;+‘+2), 
k=l kcATntl 

(16) 
f 1(x;+ ’ )=kg* WkfO(Lzk) m;+ -4+‘)+ c Wkf0(5k)i~(XJn+1+Xnk+1+2). 

ke.4/n+, 

This manner of proceeding produces f symmetrically in the neighborhood of - 1 
and 1: 

VXE[-1-&, -l-J, .m)=f(F-x), 

VXE Cl, 1 +s], f(x)=“m-xl. 

This leads to 

1;’ - 
-l* -1 -I* 1-C 1 lr 

Numerical experimentation on Eq. (14) confirms the need for these boundary 
processings: if corrections (15) and (16) are not made, particles accumulate in the 
neighborhood of - 1 and 1 with the course of time, and the approximated solution 
tends to infinity with t in the neighborhood or - 1 and l! 

Solving a diffusion equation on a bounded area with nondegenerate boundary 
conditions of the Dirichlet or Neumann type has not been dealt with yet. 

3. FAST ION TRANSPORT: FOKKER-PLANCK EQUATION 

3.1. Introduction 

We now contemplate investigating fast ion transport in a background plasma. 
Each particle species k is characterized by its mass mk, its charge qk = Z,e, its 
energy Ek(X) and its density n,Jx). Index k refers to fast ions (k= a), electrons 
(k = e), and ions (k = i) of the background plasma. Variable x indicates the location 
within a l-dimensional plasma. 
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Let f =f(x, v, p, t) be the distribution function of fast ions in plane geometry 
(v=(v~+v;+vf)“*, p = x .v(llxll llvjl). The action of Coulombian collisions 
between fast ions and background plasma electrons and ions is modelled, in the 
absence of a signifiant electromagnetic field, by the Fokker-Planck equation [ 151, 

where a, b, c are functions depending on the physical characteristics of the back- 
ground plasma. Let: g = v*f: This equation can be written in a conservative form, 

ag a ar+a:r(““g)+~(A(x,v)g)+~ B( 4% +a (I-$)C(X,U)$ =o, 
( x, 4 ap ( > 

with 

(17) 

&, “) = - f a(x, v) + $ b(x, v), 

B(x, v) = - -$ b(x, v), 

C(x, 0) = -$ C(x, v). 

Similarly, in spherical geometry (r = (x2 + y2 + z*)‘/*, v = (vz + U: + u:)'/~, 

,U = r. vJ]lrll IIv,II ), the Fokker-Planck equation can be written 

with g = r2v2J: 
For density- and energy-homogeneous plasmas and for fast-ion energy E, such 

that 

we can suppose as a first approximation that 

A(x, v) = A(v) 2: --cI,v - cqv-2, 

B(x, 0) 2: 0, 

C(x, v)= C(v) N -ye”-*-yiv-3, 
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where c1,, c(~, y,, yi are coefficients depending on the physical characteristics of the 
background plasma (see below). 

Two typical examples of such situations are exhibited in [ 111: 

(a) slowing down of l-MeV protons in a borondeuterium-tritium (BDT) 
plasma such that n, = 2.5 x 1O23 cmp3, ni= 7.14 x 10” cmm3, and E,= E,= 50 KeV, 

(b) slowing down of 3.5 MeV cc-particles in a deuterium-tritium (DT) plasma 
such that n, = nj = 2.5 x 1O26 cme3 and E, = E, = 50 KeV. 

Let u0 be the initial velocity of fast ions. Let ide, 1, be the electronic and ionic 
Debye lengths in the background plasma: 

Let log A,, log Ai be the electronic and ionic Coulomb logarithms: 

log A, = log m, AdeAdi 2Ee 

mm + m, (& + 1p2 Z,e2 ’ 

log Ai = log m, Ade lzdi miv2 
m, + m, (A$< + Lii)“’ Z,Zie2 > 

Let t, be the energy relaxation time for scattering from electrons [ 151: 

3 rn,Ez” 
- n,mk12Z,e4 log A,’ 

Let us take t,, v,t,, and a0 as time, length, and velocity units. Then we obtain 
the following values of coefftcients clp, cli, ye, yi in both physical situations described 
above: 

Situation (a) (log A, r 12) 0.05 0.1452 0.0125 0.576 
Situation (b) (log A, N 10) 0.05 0.206 0.0035 0.0619 

3.2. Particle Approximation 

Under the previous physical hypothesis the Fokker-Planck equation in plane 
geometry can be written (g = o’f): 

~+&vg)--&p+cY~v’)g)-; 
( 

(l-~~)(y,v-2+yi~-~)~ =o. (19) 
> 
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The generalization of the method described in Section 2 leads to this equation in 
the form: 

$+=$pug)--f& [ (a,u+a,u-‘)g -A 1 [( ap (1-~2)(y~U-2+yiU~3)~~)g]=0. 

The function go= u2fo is approximated by a sum of tensor products of 
regularized Dirac functions: 

An approximated solution of Eq. (19) can then be written 

cF!(~~ u? /A ‘I=& ,f i.s,(x-xj(t)) C,,("-uj(r)) i+(P-PjLi(f))~ (20) 
l-1 

where, for any j, xi(t), uj( t), and pj( t) are solutions of the characteristic differential 
equations 

iji(r) = PjCf) uj(t), 
Xj(0) =x;; (21) 

q(t) = -cr,u,(t) - criu,-2(t), 

Vi(O) = u;; (22) 

= 41 - P;Li2(ww-‘(~) + lwy’(O) 

=/A;. 

(23) 

Thus, according to (20) we obtain 

bjij(l)= -Cl -Pf(f))(Yeu,‘2(t) + Yi”,‘3(r)) 

Coupled equations (21), (22), (23) are approximated by a classical explicit Euler 
scheme. We observe that Eq. (22) directly integrates; we obtain 

(24) 
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In spherical geometry the Fokker-Planck equation can be written in the form 
(g=2u2f): 

ag a a 
;,+;,(~vg)-(!L'((~,u+~,u-*)g) 

+A(*-p') f-(y..u-*+yiu-3)~a 
ap [ g ap 1 

g=o. 

An approximated solution can then be written 

g(r, 0, p, t) = $ ; iEr(r - r,(t)) iqt" - uj(t)) i.+(P- PjJt))3 

I- 1 

where, for any j, rj(t), u,(t), and pj( t) are solutions to the following characteristic 
differential equations: 

ij(t) = Pji(Q uj(t), 

r,(O) = rp; 

tij(f) = -cleuj(t) - criuJ~*(t), 

u,(O) = u;; 

bj(l) = (1 -$((t)) 
( 

z- (r,vJ:‘(t) +yiuJ:3(t)) 
J > 

x 

( 

CF= i i,,(rj(t) - rdf)) i,,("j(r) -uk(t)) CL,(Pjci(z) - Pktt)) 

Cf= 1 i,,(rj(t) -rk(t)) i.z,("j(t)-uk(t)) io,(Pji(t)-Pk(t)) > 

From Eq. (24), we deduce that the modulus u(t) of fast ion velocity decreases 
with time until it reaches the thermal velocity Vthi= (2E;/m,)“’ of background 
plasma ions. At that point, the fast ions are thermalized and Eq. (19) is not valid 
any more. A simple calculation shows that this thermalization takes place for 
t > 0.99 t, and u 1: 0.0793 u0 in situation (a) (resp. t N 0.81 t, and u N 0.154 u0 in 
situation (b)). 

Let us assume that at initial time, the fast ions are uniformly spread between 
-0.1 I, and 0.1 &,. Let us assume, moreover, that u = u0 and the values of p are 
uniformly spread between - 1 and 1. Without restriction to generality, we may 
assume that 0 <x,< 0.1 2,. The fast ions that escape the box on the left side with 
a negative velocity are “reflected” and re-enter the box with a velocity of the same 
modulus but with positive sign. If pJ’+ ’ < - 1 or pJ’+’ > 1, we proceed as stated for 
the model equation in Section 2.4. 

We assume that the box is sufficiently wide, so that no fast ions can reach the 
right side of the box during the simulation. 
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Figures 3-6 show the distribution of particles in phase space (x, p) with the 
course of time. We can very clearly observe the effect of the diffusion term in p, 

which is more important in situation (a) than in situation (b), as expected, due to 
the values y, and yi. 

3.3. Energy Depositions 

By definition, the rate of the energy density deposited by fast ions in background 
plasma is written 

Qx, t) = Jorn J;, u2fJ(a,u+aiu~‘)g)dud~. 

An integration by parts provides 

&‘(x, t)= -210m r’, (a,u2+cliu-‘)gdudp. 

Using the weak approximation 2 of g, 

we obtain the following approximation of Q 

d(x,t)= -;,f ( a&(t) + a,u,-l(t)) 6(x- xjt)). 

IF-1 

Hence, after regularization, 

8(x, t)= -; ,i ( N,2Uj(t)+C(iU,‘*(t))[EI(X-Xj(t)). 

J-1 

The density of the energy lost by fast ions at time n At in background plasma is 
therefore written 

P’(x) ‘v j-id’ 8(x, u) du. 

The trapezoidal integration formula provides 

n-1 

&f”‘(x) N At c 8(x, k At) + f 8(x, n At)). 
k=l 
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FIG. 3. 1 MeV protons in a 50 KeV BDT plasma (x. p) phase space (plane geometry): Left without 
diffusion; right with diffusion; At = 0.01 1,; E, = 0.025 u0 I,; E, = 0.025 u,; E,, = 0.2; N = 1000 
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FIG. 4. 1 MeV protons in a 50 KeV BDT plasma (r, g) phase space (spherical geometry): Left 
without diffusion; right with diffusion; At =O.Ol 1,; E, =0.025 uOf,; ~,.=0.025 u,; s,,=O.Z; N= 1000. 
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7 = 0.8 TE 

FIG. 5. 3.5 MeV a-particles in a 50 KeV DT plasma (x, p) phase space (plane geometry): Left 
without diffusion; right with diffusion; At = 0.01 t,; E, = 0.025 v0 t,; E, = 0.025 0,; E, = 0.2; N= 1000. 
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T = 0.6 TE( 

FIG. 6. 3.5 MeV a-particles in a 50 KeV DT plasma (r, KC) phase space (spherical geometry): Left 
without diffusion; right with diffusion; Ai = 0.01 I,, ~,=0.025 o,r,; el.=0.025 0,; ~,,=0.2; N= 1000. 
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The density of the energy lost by fast ions at time n AC on background plasma 
electrons is written 

with 

&(x, t)= -;a< f u;(t)~,~(x-Xi(t)). 
J=l 

For the background plasma ions we obtain 
n-1 

c &~,kAt)+i$(~,ndt) 
k=l 

with 

&x, t)= -$ ,c uJ-‘(t)~,~(x-Xi(t)). 
J-1 

Figures 7 and 8 exhibit the functions 82 and 8: for both physical examples as 
described above. They can be compared with the results previously obtained with 
other methods such as [ 11, 161. 

g 

w 
N 

$ 

w 
h( 

0.30 

0.20 

E. IE 

0. 

0 

0.30 

0.28 

8. iE 

0. 

--F-7------r-1 
8.30 -7 

T = 0.9 TE 

0.X 0.40 8.6’2 o.ec ,.oa 8. 0.20 0. do 0.68 0.80 I.00 

xfv,rE *JE 

Plane geometq 

0. 8.21 0.*0 0.60 8.80 1.00 0. 0.20 8. d0 0.60 8.80 1.00 

*OTE %TE 

Spherical geometry 

FIG. 7. 1 MeV protons in a 50 KeV BDT plasma. Energy deposition to the plasma: Left without dif- 
fusion; right with diffusion; Ar = 0.01 fh, E, = 0.025 q,f,; E, = 0.025 0,; E,, = 0.2; N = 1000. 

581/82/l-10 
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1 - 0.8 TE , - 0.8 lr -. 

Plane geomeuy 

0.2E - 
0.20 

0. 0.20 0.40 0.60 0.80 1.00 0. 0.20 0.d0 0.60 0.80 1.00 

*l?E %‘E 

Spherical geometry 

FIG. 8. 3.5 MeV a-particles in a 50 KeV DT plasma. Energy deposition to the plasma: Left without 
diffusion; right with diffusion; Af = 0.01 I,; E, = 0.025 u,, I,; E, = 0.025 0,; E, = 0.2; N = 1000. 

4. IMPLEMENTATION 

The main cost of this method lies in the calculation of sums of terms of the type 

ie,txjexk) i~,(~j-~k) i.z,(Pj-Pk) (25) 

OI- 

which are involved for each particle xi, vi, pj at each time step. We use a classical 
data processing procedure as described in [ 1, p. 2771, referring to the calculation 
of interparticle forces at short range. Each particle is set in a cell with a size of 
E,E,E~. Since terms (25) or (26) equal zero for Ixj-xkl GE,, Iuj- ukJ GE,, or 
Ipj - pkl < E,, only particles (x k, ok, &) contained in the same cell as (xi, vi, pi) or 
in an adjacent one can contribute to the sums of terms (25) or (26). 

On a computer of the type CRAY-1S we observed CPU times in the region of 
lop4 s per time step and per particle in a nonvectorized code. 
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5. CONCLUSIONS 

As we recently described [17] a deterministic particle method is available to 
manage transport-diffusion equations. The application of this method to the 
Fokker-Planck equation gives good results, with reasonable computing times, 
though the code is not vectorized. The benefits of this method are of several types: 

(1) It is versatile, since it covers transport problems as well as transport- 
diffusion problems. 

(2) It offers an easy and natural way to deal with the effect of a force field 
acting on particles. It is in fact sufficient to add the contribution of this force field 
to the motion of the particles in phase space and to resolve the transformed motion 
equations. 

(3) It avoids the need for using Monte Carlo methods, which often lead to 
noisy results. 

(4) One can always assign the same “weight” to all particles, without this 
weight being modified during the simulation. 

(5) Because the problem is 3-dimensional (x, v, p variables), and that we use 
“few” particles, the cost of this method is still reasonable. 

(6) The constraint imposed on the time step to ensure stability is very similar 
to the condition obtained for the classical explicit finite difference method. 

Notice that this method, which consists in the simulation of a physical medium 
by means of a set of “numerical” particles mutually interacting at least within a 
certain neighborhood, is very close to the methods used in molecular dynamics. It 
presently has two drawbacks: 

(1) The solution of the problem dealt with must be strictly positive (however, 
see [14]). 

(2) It is not easy to take boundary conditions into account, such as Dirichlet 
or Neumann, especially if the boundary at which these conditions must be applied 
is geometrically “complicated.” 
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